Email updates

Keep up to date with the latest news and content from Frontiers in Zoology and BioMed Central.

Open Access Research

Brain architecture of the largest living land arthropod, the Giant Robber Crab Birgus latro (Crustacea, Anomura, Coenobitidae): evidence for a prominent central olfactory pathway?

Jakob Krieger1, Renate E Sandeman2, David C Sandeman3, Bill S Hansson4 and Steffen Harzsch14*

Author Affiliations

1 Institute of Zoology, Department of Cytology and Evolution, University of Greifswald, Johann-Sebastian-Bach-Straße 11/12, D-17487 Greifswald, Germany

2 Justus-Liebig-Universität Gießen, Fachbereich 06 Psychologie und Sportwissenschaft, Abteilung für Entwicklungspsychologie, Otto-Behaghel-Strasse 10F, D-35394 Giessen, Germany

3 Wellesley College, 106 Central Street, Wellesley College, Department of Biological Sciences, Wellesley, MA 02481-8203, USA

4 Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Beutenberg Campus, Hans-Knöll-Str. 8, D-07745 Jena, Germany

For all author emails, please log on.

Frontiers in Zoology 2010, 7:25  doi:10.1186/1742-9994-7-25

Published: 10 September 2010

Abstract

Background

Several lineages within the Crustacea conquered land independently during evolution, thereby requiring physiological adaptations for a semi-terrestrial or even a fully terrestrial lifestyle. Birgus latro Linnaeus, 1767, the giant robber crab or coconut crab (Anomura, Coenobitidae), is the largest land-living arthropod and inhabits Indo-Pacific islands such as Christmas Island. B. latro has served as a model in numerous studies of physiological aspects related to the conquest of land by crustaceans. From an olfactory point of view, a transition from sea to land means that molecules need to be detected in gas phase instead of in water solution. Previous studies have provided physiological evidence that terrestrial hermit crabs (Coenobitidae) such as B. latro have a sensitive and well differentiated sense of smell. Here we analyze the brain, in particular the olfactory processing areas of B. latro, by morphological analysis followed by 3 D reconstruction and immunocytochemical studies of synaptic proteins and a neuropeptide.

Results

The primary and secondary olfactory centers dominate the brain of B. latro and together account for ca. 40% of the neuropil volume in its brain. The paired olfactory neuropils are tripartite and composed of more than 1,000 columnar olfactory glomeruli, which are radially arranged around the periphery of the olfactory neuropils. The glomeruli are innervated ca. 90,000 local interneurons and ca. 160,000 projection neurons per side. The secondary olfactory centers, the paired hemiellipsoid neuropils, are targeted by the axons of these olfactory projection neurons. The projection neuron axonal branches make contact to ca. 250.000 interneurons (per side) associated with the hemiellipsoid neuropils. The hemiellipsoid body neuropil is organized into parallel neuropil lamellae, a design that is quite unusual for decapod crustaceans. The architecture of the optic neuropils and areas associated with antenna two suggest that B. latro has visual and mechanosensory skills that are comparable to those of marine Crustacea.

Conclusions

In parallel to previous behavioral findings that B. latro has aerial olfaction, our results indicate that their central olfactory pathway is indeed most prominent. Similar findings from the closely related terrestrial hermit crab Coenobita clypeatus suggest that in Coenobitidae, olfaction is a major sensory modality processed by the brain, and that for these animals, exploring the olfactory landscape is vital for survival in their terrestrial habitat. Future studies on terrestrial members of other crustacean taxa such as Isopoda, Amphipoda, Astacida, and Brachyura will shed light on how frequently the establishment of an aerial sense of olfaction evolved in Crustacea during the transition from sea to land. Amounting to ca. 1,000,000, the numbers of interneurons that analyse the olfactory input in B. latro brains surpasses that in other terrestrial arthropods, as e.g. the honeybee Apis mellifera or the moth Manduca sexta, by two orders of magnitude suggesting that B. latro in fact is a land-living arthropod that has devoted a substantial amount of nervous tissue to the sense of smell.